101 research outputs found

    New digital infrastructure, cross-border e-commerce and global vision of creating Electronic World Trade Platform

    Get PDF
    The rapid development of cross-border e-commerce has integrated with the global economy more closely in the past decade. How to create global digital customs to facilitate cross-border e-commerce on the basis of national Single Window system has become an important task for national governments and international organizations such as World Customs Organizations? The paper aims to explore the relationship between technological progress, cross-border e-commerce and the establishment of global digital customs from the dimensions of the latest development of new digital infrastructure, national Single Window system and global vision of creating Electronic World Trade Platform (eWTP). It is argued that cross-border e-commerce platforms, national Single Window and eWTP, all of which are indispensable for the establishment of global digital customs, have close linkages in business regulation, data sharing and information exchange. The establishment of global digital customs requires global governance through the joint efforts by firms, national governments and international organizations

    Mutational bias of Turnip Yellow Mosaic Virus in the context of host anti-viral gene silencing

    Get PDF
    Plant Dicer-like (DCL) enzymes exhibit a GC-preference during anti-viral post-transcriptional gene silencing (PTGS), delivering an evolutionary selection pressure resulting in plant viruses with GC-poor genomes. However, some viruses, e.g. Turnip Yellow Mosaic Virus (TYMV, genus Tymovirus) have GC-rich genomes, raising the question as to whether or not DCL derived selection pressure affects these viruses. In this study we analyzed the virus-derived small interfering RNAs from TYMV-infected leaves of Brassica juncea showed that the TYMV population accumulated a mutational bias with AU replacing GC (GC–AU), demonstrating PTGS pressure. Interestingly, at the highly polymorphic sites the GC–AU bias was no longer observed. This suggests the presence of an unknown mechanism preventing mutational drift of the viral population and maintaining viral genome stability, despite the host PTGS pressure

    High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study.</p> <p>Results</p> <p>The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system.</p> <p>Conclusion</p> <p>The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.</p

    A survey of overlooked viral infections in biological experiment systems

    Get PDF
    It is commonly accepted that there are many unknown viruses on the planet. For the known viruses, do we know their prevalence, even in our experimental systems? Here we report a virus survey using recently published small (s)RNA sequencing datasets. The sRNA reads were assembled and contigs were screened for virus homologues against the NCBI nucleotide (nt) database using the BLASTn program. To our surprise, approximately 30% (28 out of 94) of publications had highly scored viral sequences in their datasets. Among them, only two publications reported virus infections. Though viral vectors were used in some of the publications, virus sequences without any identifiable source appeared in more than 20 publications. By determining the distributions of viral reads and the antiviral RNA interference (RNAi) pathways using the sRNA profiles, we showed evidence that many of the viruses identified were indeed infecting and generated host RNAi responses. As virus infections affect many aspects of host molecular biology and metabolism, the presence and impact of viruses needs to be actively investigated in experimental systems

    Zinc finger and interferon-stimulated genes play a vital role in TB-IRIS following HAART in AIDS

    Get PDF
    Aim: Co-infection in HIV-1 patients with Mycobacterium tuberculosis poses considerable risk of developing the immune reconstitution inflammatory syndrome (IRIS), especially upon the initiation of antiretroviral therapy (ART). Methodology &amp; results: For transcriptomic analysis, peripheral blood mononuclear cells’ whole gene expression was used from three patient groups: HIV+ (H), HIV-TB+ (HT), HIV-TB+ with IRIS (HTI). Pathway enrichment and functional analysis was performed before and after highly active ART. Genes in the interferon-stimulating and ZNF families maintained tight functional interaction and tilted the balance in favor of TB-IRIS. Discussion &amp; conclusion: The functional impairment of interaction between ZNF genes and interferon-stimulated genes, along with higher expression of S100A8/S100A9 genes possibly forms the genomic basis of TB-IRIS in a subset of HIV patients while on highly active ART

    Characterization of viral RNA splicing using whole-transcriptome datasets from host species

    Get PDF
    RNA alternative splicing (AS) is an important post-transcriptional mechanism enabling single genes to produce multiple proteins. It has been well demonstrated that viruses deploy host AS machinery for viral protein productions. However, knowledge on viral AS is limited to a few disease-causing viruses in model species. Here we report a novel approach to characterizing viral AS using whole transcriptome dataset from host species. Two insect transcriptomes (Acheta domesticus and Planococcus citri) generated in the 1,000 Insect Transcriptome Evolution (1KITE) project were used as a proof of concept using the new pipeline. Two closely related densoviruses (Acheta domesticus densovirus, AdDNV, and Planococcus citri densovirus, PcDNV, Ambidensovirus, Densovirinae, Parvoviridae) were detected and analyzed for AS patterns. The results suggested that although the two viruses shared major AS features, dramatic AS divergences were observed. Detailed analysis of the splicing junctions showed clusters of AS events occurred in two regions of the virus genome, demonstrating that transcriptome analysis could gain valuable insights into viral splicing. When applied to large-scale transcriptomics projects with diverse taxonomic sampling, our new method is expected to rapidly expand our knowledge on RNA splicing mechanisms for a wide range of viruses

    Dynamics of Gut Microbiome in Giant Panda Cubs Reveal Transitional Microbes and Pathways in Early Life

    Get PDF
    Adult giant pandas (Ailuropoda melanoleuca) express transitional characteristics in that they consume bamboos, despite their carnivore-like digestive tracts. Their genome contains no cellulolytic enzymes; therefore, understanding the development of the giant panda gut microbiome, especially in early life, is important for decoding the rules underlying gut microbial formation, inheritance and dietary transitions. With deep metagenomic sequencing, we investigated the gut microbiomes of two newborn giant panda brothers and their parents living in Macao, China, from 2016 to 2017. Both giant panda cubs exhibited progressive increases in gut microbial richness during growth, particularly from the 6th month after birth. Enterobacteriaceae dominated the gut microbial compositions in both adult giant pandas and cubs. A total of 583 co-abundance genes (CAGs) and about 79 metagenomic species (MGS) from bacteria or viruses displayed significant changes with age. Seven genera (Shewanella, Oblitimonas, Helicobacter, Haemophilus, Aeromonas, Listeria, and Fusobacterium) showed great importance with respect to gut microbial structural determination in the nursing stage of giant panda cubs. Furthermore, 10 orthologous gene functions and 44 pathways showed significant changes with age. Of the significant pathways, 16 from Escherichia, Klebsiella, Propionibacterium, Lactobacillus, and Lactococcus displayed marked differences between parents and their cubs at birth, while 29 pathways from Escherichia, Campylobacter and Lactobacillus exhibited significant increase in cubs from 6 to 9 months of age. In addition, oxidoreductases, transferases, and hydrolases dominated the significantly changed gut microbial enzymes during the growth of giant panda cubs, while few of them were involved in cellulose degradation. The findings indicated diet-stimulated gut microbiome transitions and the important role of Enterobacteriaceae in the guts of giant panda in early life

    Artemisinin Ameliorates Osteoarthritis by Inhibiting the Wnt/β-Catenin Signaling Pathway

    Get PDF
    Background/Aims: Current drug therapies for osteoarthritis (OA) are not practical because of the cytotoxicity and severe side-effects associated with most of them. Artemisinin (ART), an antimalarial agent, is well known for its safety and selectivity to kill injured cells. Based on its anti-inflammatory activity and role in the inhibition of OA-associated Wnt/β-catenin signaling pathway, which is crucial in the pathogenesis of OA, we hypothesized that ART might have an effect on OA. Methods: The chondro-protective and antiarthritic effects of ART on interleukin-1-beta (IL-1β)-induced and OA patient-derived chondrocytes were investigated in vitro using cell viability assay, glycosaminoglycan secretion, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western blotting. We also used OA model rats constructed by anterior cruciate ligament transection and medial meniscus resection (ACLT+MMx) in the joints to investigate the effects of ART on OA by gross observation, morphological staining, immunohistochemistry, and enzyme-linked immunosorbent assay. Results: ART exhibited potent anti-inflammatory effects by inhibiting the expression of proinflammatory chemokines and cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor alpha, and matrix metallopeptidase-13. It also showed favorable chondro-protective effect as evidenced by enhanced cell proliferation and viability, increased glycosaminoglycan deposition, prevention of chondrocyte apoptosis, and degeneration of cartilage. Further, ART inhibited OA progression and cartilage degradation via the Wnt/β-catenin signaling pathway, suggesting that it might serve as a Wnt/β-catenin antagonist to reduce inflammation and prevent cartilage degradation. Conclusion: In conclusion, ART alleviates IL-1β-mediated inflammatory response and OA progression by regulating the Wnt/β-catenin signaling pathway. Thereby, it might be developed as a potential therapeutic agent for OA
    • …
    corecore